AI-Assisted Vision for Agricultural Robots

Author:

Fountas Spyros,Malounas IoannisORCID,Athanasakos Loukas,Avgoustakis Ioannis,Espejo-Garcia BorjaORCID

Abstract

Robotics has been increasingly relevant over the years. The ever-increasing demand for productivity, the reduction of tedious labor, and safety for the operator and the environment have brought robotics to the forefront of technological innovation. The same principle applies to agricultural robots, where such solutions can aid in making farming easier for the farmers, safer, and with greater margins for profit, while at the same time offering higher quality products with minimal environmental impact. This paper focuses on reviewing the existing state of the art for vision-based perception in agricultural robots across a variety of field operations; specifically: weed detection, crop scouting, phenotyping, disease detection, vision-based navigation, harvesting, and spraying. The review revealed a large interest in the uptake of vision-based solutions in agricultural robotics, with RGB cameras being the most popular sensor of choice. It also outlined that AI can achieve promising results and that there is not a single algorithm that outperforms all others; instead, different artificial intelligence techniques offer their unique advantages to address specific agronomic problems.

Funder

European Commission H2020 “Robs4Crops” project.

Publisher

MDPI AG

Subject

General Medicine

Reference96 articles.

1. Agricultural Robotics for Field Operations

2. Agricultural robots for field operations. Part 2: Operations and systems

3. A critical review on agricultural robots;Reddy;Int. J. Mech. Eng. Technol.,2016

4. Review of control on agricultural robot tractors;Alberto-Rodriguez;Int. J. Comb. Optim. Probl. Inform.,2020

5. A review of autonomous navigation systems in agricultural environments;Shalal;Proceedings of the SEAg 2013: Innovative Agricultural Technologies for a Sustainable Future,2013

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3