Prediction of Harvest Time of Tomato Using Mask R-CNN

Author:

Minagawa Daichi,Kim Jeyeon

Abstract

In recent years, the agricultural field has been confronting difficulties such as the aging of farmers, a shortage of workers, and difficulties for new farmers. Harvesting time prediction has the potential to solve these problems, and is expected to effectively utilize human resources, save labor, and reduce labor costs. To achieve harvesting time prediction, various works are being actively conducted. Methods for harvesting time prediction using meteorological information such as temperature and solar radiation, etc., and methods for harvesting time prediction using neural networks based on color information from fruit bunch images are being investigated. However, the prediction accuracy is still insufficient, and the harvesting time prediction for individual tomato fruits has not been studied. In this study, we propose a novel method to predict the harvesting time for individual tomato fruits. The method uses Mask R-CNN to detect tomato bunches and uses two types of ripeness determination to predict the harvesting time of individual tomato fruits. The experimental results showed that the accuracy of the prediction using the ratio of R values was better for the harvesting time prediction of tomatoes that are close to the harvesting time, and the accuracy of the prediction using the average of the differences between R and G in RGB values was better for the harvesting time prediction of tomatoes that are far from the harvesting time. These results show the effectiveness of the proposed method.

Publisher

MDPI AG

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3