Dynamic Behavior Forecast of an Experimental Indirect Solar Dryer Using an Artificial Neural Network

Author:

Tlatelpa Becerro Angel1ORCID,Rico Martínez Ramiro2ORCID,López-Vidaña Erick César3ORCID,Montiel Palacios Esteban4,Torres Segundo César4ORCID,Gadea Pacheco José Luis4

Affiliation:

1. Departamento de Ingeniería en Robótica y Manufactura Industrial, Escuela de Estudios Superiores de Yecapixtla, Universidad Autónoma del Estado de Morelos, Yecapixtla 62824, Mexico

2. Tecnológico Nacional de México, I.T. Celaya, Celaya 38000, Mexico

3. Consejo Nacional de Humanidades, Ciencias y Tecnología, Centro de Investigación en Materiales Avanzados S.C., Durango 34147, Mexico

4. Escuela de Estudios Superiores de Xalostoc, Universidad Autónoma del Estado de Morelos, Ayala 62725, Mexico

Abstract

This research presents the prediction of temperatures in the chamber of a solar dryer using artificial neural networks (ANN). The dryer is a forced-flow type and indirect. Climatic conditions, temperatures, airflow, and geometric parameters were considered to build the ANN model. The model was a feed-forward network trained using a backpropagation algorithm and Levenberg–Marquardt optimization. The configuration of the optimal neural network to carry out the verification and validation processes was nine neurons in the input layer, one in the output layer, and two hidden layers of thirteen and twelve neurons each (9-13-12-1). The percentage error of the predictive model was below 1%. The predictive model has been successfully tested, achieving a predictor with good capabilities. This consistency is reflected in the relative error between the predicted and experimental temperatures. The error is below 0.25% for the model’s verification and validation. Moreover, this model could be the basis for developing a powerful real-time operation optimization tool and the optimal design for indirect solar dryers to reduce cost and time in food-drying processes.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Horticulture,Food Science,Agronomy and Crop Science

Reference50 articles.

1. Obtaining of Crataegus mexicana leaflets using an indirect solar dryer;Urquiza;Rev. Mex. Ing. Quím.,2020

2. Solar drying simulation of different products: Lebanese case;Marwan;Energy Rep.,2020

3. Design, Development and Performance of Indirect Type Solar Dryer for Banana Drying;Abhay;Energy Procedia,2017

4. Energy Conservation Through Solar Energy Assisted Dryer for Plastic Processing Industry;Kokatea;Energy Procedia,2014

5. Experimental performance of direct forced convection household solar dryer for drying banana;Nabnean;Case Stud. Therm. Eng.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3