Life Cycle Assessment of the Canned Fruits Industry: Sustainability through Waste Valorization and Implementation of Innovative Techniques

Author:

Drosou Fotini1,Kekes Tryfon2,Boukouvalas Christos2ORCID

Affiliation:

1. Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, 12243 Athens, Greece

2. Laboratory of Process Analysis and Design, Department of Process Analysis and Plant Design, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece

Abstract

The canned fruits industry utilizes high amounts of water and energy, which results in the generation of vast quantities of wastewater and solid waste. The main scope of this study was to compare the environmental footprint of a canned fruits industry (alternative scenario) equipped with appropriate processes (pulsed electric fields, anaerobic digestion, composting, membrane bioreactors, and ultraviolet treatment) that sufficiently save energy and valorize production wastes to a typical setup that uses conventional waste methods (conventional scenario) via conducting a life cycle assessment study. Based on the results, the life cycle assessment confirmed the fact that the incorporation of the proposed methods, as described in the alternative scenario, dramatically reduced the environmental footprint of the industry, with certain environmental impact categories reaching a decrease of up to 90.00%. More specifically, according to the obtained results, a decrease of 11.81, 64.56, and 89.79% in regards to climate change, freshwater ecotoxicity, and freshwater consumption, respectively, was achieved in the alternative scenario compared to the conventional method. The study verified the environmental advantages of integrating such energy saving and waste treatment/valorization technologies across the canned fruits industry’s processing chain, contributing to environmental sustainability and safety.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Horticulture,Food Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3