Visual Detection of Portunus Survival Based on YOLOV5 and RCN Multi-Parameter Fusion

Author:

Feng Rui1,Zhang Gang1ORCID,Yang Song1,Chen Yuehua1

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China

Abstract

Single-frame circulation aquaculture belongs to the important category of sustainable agriculture development. In light of the visual-detection problem related to survival rate of Portunus in single-frame three-dimensional aquaculture, a fusion recognition algorithm based on YOLOV5, RCN (RefineContourNet) image recognition of residual bait ratio, centroid moving distance, and rotation angle was put forward. Based on three-parameter identification and LWLR (Local Weighted Linear Regression), the survival rate model of each parameter of Portunus was established, respectively. Then, the softmax algorithm was used to obtain the classification and judgment fusion model of Portunus’ survival rate. In recognition of the YOLOV5 residual bait and Portunus centroid, the EIOU (Efficient IOU) loss function was used to improve the recognition accuracy of residual bait in target detection. In RCN, Portunus edge detection and recognition, the optimized binary cross-entropy loss function based on double thresholds successfully improved the edge clarity of the Portunus contour. The results showed that after optimization, the mAP (mean Average Precision) of YOLOV5 was improved, while the precision and mAP (threshold 0.5:0.95:0.05) of recognition between the residual bait and Portunus centroid were improved by 2% and 1.8%, respectively. The loss of the optimized RCN training set was reduced by 4%, and the rotation angle of Portunus was obtained using contour. The experiment shows that the recognition accuracy of the survival rate model was 0.920, 0.840, and 0.955 under the single parameters of centroid moving distance, residual bait ratio, and rotation angle, respectively; and the recognition accuracy of the survival rate model after multi-feature parameter fusion was 0.960. The accuracy of multi-parameter fusion was 5.5% higher than that of single-parameter (average accuracy). The fusion of multi-parameter relative to the single-parameter (average) accuracy was a higher percentage.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Horticulture,Food Science,Agronomy and Crop Science

Reference32 articles.

1. Optimal Control of Water Quality in a Recirculating Aquaculture System;Attramadal;IFAC-Pap. OnLine,2022

2. A VGG-19 Model with Transfer Learning and Image Segmentation for Classification of Tomato Leaf Disease;Nguyen;Agri. Eng.,2022

3. Automatic Classification of the Ripeness Stage of Mango Fruit Using a Machine Learning Approach;Worasawate;Agric. Eng.,2022

4. A novel automatic detection method for abnormal behavior of single fish using image fusion;Li;Comput. Electron. Agric.,2022

5. A spatiotemporal attention network-based analysis of golden pompano school feeding behavior in an aquaculture vessel;Zheng;Comput. Electron. Agric.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3