Comparing Two Methods of Leaf Area Index Estimation for Rice (Oryza sativa L.) Using In-Field Spectroradiometric Measurements and Multispectral Satellite Images

Author:

Serrano Reyes Jorge1ORCID,Jiménez José Ulises2ORCID,Quirós-McIntire Evelyn Itzel34,Sanchez-Galan Javier E.45ORCID,Fábrega José R.246ORCID

Affiliation:

1. Centro de Producción e Investigaciones Agroindustriales, Universidad Tecnológica de Panamá (UTP), El Dorado P.O. Box 0819-07289, Panama

2. Centro de Investigaciones Hidráulicas e Hidrotécnicas, Universidad Tecnológica de Panamá (UTP), El Dorado P.O. Box 0819-07289, Panama

3. Instituto de Investigación Agropecuaria de Panamá (IDIAP), El Coco P.O. Box 500-0519, Panama

4. Sistema Nacional de Investigación, SENACYT, Edificio 205, Ciudad del Saber P.O. Box 0816-02852, Panama

5. Facultad de Ingenieria de Sistemas Computacionales, Universidad Tecnológica de Panamá (UTP), El Dorado P.O. Box 0819-07289, Panama

6. Centro de Estudios Multidisciplinarios en Ciencias, Ingeniería y Tecnología AIP (CEMCIT AIP), Universidad Tecnológica de Panamá (UTP), EL Dorado P.O. Box 0819-07289, Panama

Abstract

This work presents a remote sensing application to estimate the leaf area index (LAI) in two rice (Oryza sativa L.) varieties (IDIAP 52-05 and IDIAP FL 137-11), as a proxy for crop performance. In-field, homogeneous spectroradiometric measurements (350–1050 nm) were carried in two campaigns (June–November 2017 and January–March 2018), on a private farm, TESKO, located in Juan Hombrón, Coclé Province, Panama. The spectral fingerprint of IDIAP 52-05 plants was collected in four dates (47, 67, 82 and 116 days after sowing), according to known phenological stages of rice plant growth. Moreover, true LAI or green leaf area was measured from representative plants and compared to LAI calculated from normalized PlanetScope multi-spectral satellite images (selected according to dates close to the in-field collection). Two distinct estimation models were used to establish the relationships of measured LAI and two vegetational spectral indices (NDVI and MTVI2). The results show that the MTVI2 based model has a slightly higher predictive ability of true LAI (R2 = 0.92, RMSE = 2.20), than the NDVI model. Furthermore, the satellite images collected were corrected and satellite LAI was contrasted with true LAI, achieving in average 18% for Model 2 for MTVI2, with the NDVI (Model 1) corrected model having a smaller error around 13%. This work provides an important advance in precision agriculture, specifically in the monitoring of total crop growth via LAI for rice crops in the Republic of Panama.

Funder

a scholarship of the Programa de Fortalecimiento de los Postgrados Nacionales from the National Secretariat for Science, Technology and Innovation

SENACYT through the project “Design of an expert system based on spectral signatures of agricultural coverage in Panama”

Sistema Nacional de Investigacion (SNI) of SENACYT

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Horticulture,Food Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3