A New Framework for the Reconstruction of Daily 1 km Land Surface Temperatures from 2000 to 2022

Author:

Xiao Yuanjun12,Li Shengcheng12,Huang Jingfeng12ORCID,Huang Ran3ORCID,Zhou Chang12

Affiliation:

1. Institute of Applied Remote Sensing and Information Technology, Zhejiang University, Hangzhou 310058, China

2. Key Laboratory of Agricultural Remote Sensing and Information Systems, Hangzhou 310058, China

3. School of Automation, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, China

Abstract

Accurate, seamless, and long-term land surface temperature (LST) data sets are crucial for investigating climate change and agriculture production. However, factors like cloud contamination have led to invalid values in the LST product, which has restricted the application of the LST dataset. Therefore, the reconstruction of LST products is challenging, and it is attracting widespread attention. This study compared the performance of different algorithms (XGBoost, GBDT, RF, POLY, MLR) and different training sets (using only good-quality pixels or using both good-quality and other-quality pixels) in the estimation of missing pixels in the LST data, obtaining a seamless daily 1 km LST dataset of MODIS Terra-day, Aqua-day, Terra-night, and Aqua-night data for Zhejiang Province and its surrounding areas from 2000 to 2022. The results demonstrated that the performance of machine-learning models is significantly better than that of linear models, and among the five models, XGBoost performed the best, with an RMSE of less than 1 °C. The Wilcoxon test between the reconstructed LST and the true LST values revealed that including both good-quality and other-quality pixels for reconstruction resulted in a 33% increase in the number of days with non-significant differences compared with using only good-quality pixels. Moreover, the reconstructed nighttime LST has a lower RMSE compared with the reconstructed daytime LST, and the RMSE of the reconstructed LST on the Terra satellite is lower than the RMSE of the reconstructed LST on the Aqua satellite. The RMSEs for the reconstructed LSTs are 0.50 °C, 0.61 °C, 0.36 °C, and 0.39 °C, corresponding to Terra-day, Aqua-day, Terra-night, and Aqua-night for images with coverage reaching 70%, 0.65 °C, 0.83 °C, 0.49 °C, respectively, and 0.52 °C for images with coverage less than 70%. The accuracy of the reconstructed LSTs using our proposed framework outperforms the existing reconstruction methods. The 1 km daily seamless LST products can be applied in various fields, such as air temperature estimation, climate change, urban heat island, and crop temperature stress monitoring.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Key R&D Program of Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3