Eigenvector Constraint-Based Method for Eliminating Dead Zone in Magnetic Target Localization

Author:

Tang Wangwang1ORCID,Huang Guangming1ORCID,Li Gaoxiang1ORCID,Yang Guoqing2ORCID

Affiliation:

1. Department of Physics, Central China Normal University, Wuhan 430079, China

2. College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Magnetic target localization using the magnetic gradient tensor (MGT) plays a significant role in underwater localization. However, this method inherently has a localization dead zone, which presents challenges for real-world applications. This paper delves into the root cause of this dead zone, identifying the non-invertibility of the MGT when the magnetic moment vector is orthogonal to the position vector from the target to the observation point. To tackle this issue, a method based on the eigenvector constraints is proposed. By constructing an objective function with eigenvector constraints and leveraging the property that its gradient at the observation point is zero, we derive an equivalent expression for the inverse of MGT that always holds and further develop a dead-zone-free localization method. To validate the robustness and efficacy of the proposed localization method, a comparative analysis with other methods is conducted. Simulation results in a 10 m × 10 m area under Gaussian noise demonstrate the proposed method’s capability to eliminate the dead zone and achieve an average localization error of 0.032 m. Experimental results further demonstrate that the proposed method eliminates the localization dead zone and exhibits greater robustness than the dominant method in the normal region. In summation, this paper provides an effective method for eliminating localization dead zone, offering a more stable and reliable method for magnetic target localization in practice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3