Remote Sensing-Based Simulation of Snow Grain Size and Spatial–Temporal Variation Characteristics of Northeast China from 2001 to 2019

Author:

Zhang Fan1,Zhang Lijuan2,Zheng Yanjiao3,Wang Shiwen2,Huang Yutao2

Affiliation:

1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

2. Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China

3. Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

The size of snow grains is an important parameter in cryosphere studies. It is the main parameter affecting snow albedo and can have a feedback effect on regional climate change, the water cycle and ecological security. Larger snow grains increase the likelihood of light absorption and are important for passive microwave remote sensing, snow physics and hydrological modelling. Snow models would benefit from more observations of surface grain size. This paper uses an asymptotic radiative transfer model (ART model) based on MOD09GA ground reflectance data. A simulation of snow grain size (SGS) in northeast China from 2001 to 2019 was carried out using a two-channel algorithm. We verified the accuracy of the inversion results by using ground-based observations to obtain stratified snow grain sizes at 48 collection sites in northeastern China. Furthermore, we analysed the spatial and temporal trends of snow grain size in Northeastern China. The results show that the ART model has good accuracy in inverting snow grain size, with an RMSD of 65 μm, which showed a non-significant increasing trend from 2001 to 2019 in northeast China. The annual average SGS distribution ranged from 430.83 to 452.38 μm in northeast China, 2001–2019. The mean value was 441.78 μm, with an annual increase of 0.26 μm/a, showing a non-significant increasing trend and a coefficient of variation of 0.014. The simulations show that there is also intermonth variation in SGS, with December having the largest snow grain size with a mean value of 453.92 μm, followed by January and February with 450.77 μm and 417.78 μm, respectively. The overall spatial distribution of SGS in the northeastern region shows the characteristics of being high in the north and low in the south, with values ranging from 380.248 μm to 497.141 μm. Overall, we clarified the size and distribution of snow grains over a long time series in the northeast. The results are key to an accurate evaluation of their effect on snow–ice albedo and their radiative forcing effect.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3