Multi-Label Remote Sensing Image Land Cover Classification Based on a Multi-Dimensional Attention Mechanism

Author:

You Haihui12,Gu Juntao3,Jing Weipeng1

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

2. College of Computer and Information Engineering, Heilongjiang University of Science Technology, Harbin 150080, China

3. Heilongjiang Cyberspace Research Center, Harbin 150040, China

Abstract

For the multi-label classification task of remote sensing images (RSIs), it is difficult to accurately extract feature information from complex land covers, and it is easy to generate redundant features by ordinary convolution extraction features. This paper proposes a multi-label classification model for multi-source RSIs that combines dense convolution and an attention mechanism. This method adds fusion channel attention and a spatial attention mechanism to each dense block module of the DenseNet, and the sigmoid activation function replaces the softmax activation function in multi-label classification. The improved model retains the main features of RSIs to the greatest extent and enhances the feature extraction of the images. The model can integrate local features, capture global dependencies, and aggregate contextual information to improve the multi-label land cover classification accuracy of RSIs. We conducted comparative experiments on the SEN12-MS and UC-Merced land cover dataset and analyzed the evaluation indicators. The experimental results show that this method effectively improves the multi-label classification accuracy of RSIs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. A deep multi-attention driven approach for multi-label remote sensing image classification;Sumbul;IEEE Access,2020

2. Multiclass labeling of very high-resolution remote sensing imagery by enforcing nonlocal shared constraints in multilevel conditional random fields model;Zhang;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2016

3. Multi-label classification using a cascade of stacked autoencoder and extreme learning machines;Law;Neurocomputing,2019

4. Spatial and structured SVM for multilabel image classification;Koda;IEEE Trans. Geosci. Remote. Sens.,2018

5. A deep learning approach to UAV image multilabeling;Zeggada;IEEE Geosci. Remote Sens. Lett.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3