Utilizing Hyperspectral Reflectance and Machine Learning Algorithms for Non-Destructive Estimation of Chlorophyll Content in Citrus Leaves

Author:

Li Dasui1,Hu Qingqing1,Ruan Siqi1,Liu Jun2,Zhang Jinzhi13,Hu Chungen13,Liu Yongzhong13ORCID,Dian Yuanyong14ORCID,Zhou Jingjing14

Affiliation:

1. College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China

2. East China Academy of Inventory and Planning of NFGA, Hangzhou 310000, China

3. National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China

4. Hubei Engineering Technology Research Center for Forestry Information, Wuhan 430070, China

Abstract

To address the demands of precision agriculture and the measurement of plant photosynthetic response and nitrogen status, it is necessary to employ advanced methods for estimating chlorophyll content quickly and non-destructively at a large scale. Therefore, we explored the utilization of both linear regression and machine learning methodology to improve the prediction of leaf chlorophyll content (LCC) in citrus trees through the analysis of hyperspectral reflectance data in a field experiment. And the relationship between phenology and LCC estimation was also tested in this study. The LCC of citrus tree leaves at five growth seasons (May, June, August, October, and December) were measured alongside measurements of leaf hyperspectral reflectance. The measured LCC data and spectral parameters were used for evaluating LCC using univariate linear regression (ULR), multivariate linear regression (MLR), random forest regression (RFR), K-nearest neighbor regression (KNNR), and support vector regression (SVR). The results revealed the following: the MLR and machine learning models (RFR, KNNR, SVR), in both October and December, performed well in LCC estimation with a coefficient of determination (R2) greater than 0.70. In August, the ULR model performed the best, achieving an R2 of 0.69 and root mean square error (RMSE) of 8.92. However, the RFR model demonstrated the highest predictive power for estimating LCC in May, June, October, and December. Furthermore, the prediction accuracy was the best with the RFR model with parameters VOG2 and Carte4 in October, achieving an R2 of 0.83 and RMSE of 6.67. Our findings revealed that using just a few spectral parameters can efficiently estimate LCC in citrus trees, showing substantial promise for implementation in large-scale orchards.

Funder

National Key Research and Development Plan

National Natural Fund Project

earmarked fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3