Large-Scale Crustal Deformation of the Tianshan Mountains, Xinjiang, from Sentinel-1 InSAR Observations (2015–2020)

Author:

Sha Pengcheng12ORCID,He Xiufeng1ORCID,Wang Xiaohang3,Gao Zhuang1

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China

2. Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing Institute of Surveying and Mapping, Beijing 100038, China

3. School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

Abstract

In this paper, we address some questions with respect to the Tianshan Mountains that are necessary for understanding the present deformation rate in this region. A series of thrust nappe structures are distributed on the north and south sides of the Tianshan Mountains, and many of them are currently active. To analyze the deformation characteristics and movement rates of different fold-and-thrust belts on the northern and southern margins of Tianshan, we use InSAR observations (Sentinel-1A/B, 2015–2020) to produce a rate map for the entire observation period on four ascending and four descending tracks. In order to reduce phase artifacts, we reconstruct multi-temporal scenes with atmospheric-corrected and orbital-corrected interferograms via a small baseline subset. The results show that the Bolokenu-Aqikekuduke Fault exhibits a right-lateral strike-slip motion, with the western segment moving at about 4.95 ± 0.38 mm/yr and the eastern segment at approximately 2.34 ± 0.34 mm/yr. The Manas-Tugulu anticline in the northern fold-and-thrust belt reaches ~5–8 mm/yr at 86°E–86.5°, and the Qiulitage anticline in the south reaches ~6–9 mm/yr at ~83°–85°. The post-seismic time series cumulative displacement map of the Jinghe earthquake reveals no significant post-seismic deformation signal in the epicenter area. The Qiulitage thrust belt, situated within the fold-and-thrust belts flanking the Tianshan, features extensive thrust accompanied by a right-lateral strike-slip component. And the Manas-Tugulu anticline exhibits sustained deformation, including pronounced coseismic and post-seismic effects from the Hutubi earthquake. This study highlights the potential of a multi-temporal InSAR analysis and emphasizes future opportunities presented by new generations of SAR platforms with shorter revisit periods for quantifying the spatial and temporal behavior of post-seismic and interseismic periods.

Funder

Beijing Key Laboratory of Urban Spatial Information Engineering

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3