Mapping Soil Organic Matter Using Different Modeling Techniques in the Dryland Agroecosystem of Huang-Huai-Hai Plain, Eastern China

Author:

Jin Hua1,Xie Xuefeng1ORCID,Pu Lijie23,Jia Zhenyi1,Xu Fei4

Affiliation:

1. College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China

2. School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China

3. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China

4. Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, Hangzhou 310018, China

Abstract

Accurately mapping the spatial distribution and variation of soil organic matter (SOM) is of great significance for guiding regional soil management. However, the applicability and prediction performance of machine learning techniques in dryland agroecosystems still needs to be further studied. In this study, we collected a total of 733 topsoil samples from the farmland in Xiao County, Anhui Province, which is a typical dryland agroecosystem in the Huang-Huai-Hai Plain. Then, the environmental covariates were selected, and the ordinary kriging (OK), multiple linear stepwise regression (MLR), regression kriging (RK), radial basis function neural network (RBFNN), and random forest (RF) models were conducted to map the SOM content, and the optimal model was ascertained. The results demonstrated that the alkali-hydrolyzable nitrogen (26.11%), available potassium (17.73%), mean annual precipitation (13.26%), and pH (11.80%) were the main controlling factors affecting the spatial distribution of SOM in the study area. Meanwhile, the introduction of environmental covariates can effectively improve the SOM prediction accuracy, and the RF model (R2 = 0.48, MAE = 2.38 g kg−1, MRE = 12.99%, RMSE = 3.14 g kg−1) has a better performance than the RFBNN, MLR, RK, and OK methods. Although there are local differences in the spatial distribution of SOM predicted by the five methods, the overall spatial distribution of SOM was characterized by the low concentration area (13.44–20.00 g kg−1) distributed in the central and northwest of study area, and the high concentration area (24.00–28.95 g kg−1) distributed in the southeast. Overall, our study demonstrated that machine learning-based models could accurately predict the SOM content in dryland agroecosystem, and the produced maps function as baseline maps for sustainable agricultural management.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3