Principles of a Fast Probability-Based, Data-Adaptive Gravity Inversion Method for 3D Mass Density Modelling

Author:

Cozzolino MarilenaORCID,Mauriello PaoloORCID,Patella DomenicoORCID

Abstract

The aim of this paper is to present a 3D Probability-based Earth Density Tomography Inversion (PEDTI) method derived from the principles of the Gravity Probability Tomography (GPT). The new method follows the rationale of a previous Probability-based Electrical Resistivity Inversion (PERTI) method, which has proved to be a fast and versatile user-friendly approach. Along with PERTI, PEDTI requires no external a priori information. In this paper, after recalling the GPT imaging method, the PEDTI theory is developed and concluded with a key inversion formula that allows a wide class of equivalent solutions to be computed. Two synthetic cases are discussed to show the resolution that can be achieved in the determination of density contrasts and to examine the nature of the gravity non-uniqueness problem. Regarding the first issue, it is shown that the estimate of the density by PEDTI can change by about two orders of magnitude and get closer to reality with a more focused solution on a specific source body. Regarding the second problem, it is shown that two levels of equivalence can be classified, i.e., weak and strong equivalence, for a finer selection among the solutions. This is obtained by defining two appropriate statistical indices based on the information power of both the input and output gravity datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3