Determining the Cohesive Length of Rock Materials by Roughness Analysis

Author:

Aligholi Saeed1ORCID,Khandelwal Manoj1ORCID,Torabi Ali Reza2ORCID

Affiliation:

1. Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia

2. Fracture Research Laboratory, College of Interdisciplinary Science and Technology, University of Tehran, Tehran 1439957131, Iran

Abstract

In this research, the cohesive length of various rock types is measured using quantitative fractography alongside a recently developed multifractal analysis. This length is then utilized to gauge material cohesive stress through the theory of critical distances. Furthermore, the fracture process zone length of different rings sourced from identical rocks is assessed as a function of ring dimensions and experimental measurements of fracture toughness, in accordance with the energy criterion of the finite fracture mechanics theory. Subsequently, employing the stress criterion within coupled finite fracture mechanics, the failure stress corresponding to the fracture process zone is determined for various rings. Ultimately, through interpolation, the critical stress corresponding to the cohesive length, quantified via quantitative fractography, is approximated. Remarkably, the cohesive stress values derived from both methodologies exhibit perfect alignment, indicating the successful determination of cohesive length for the analyzed rock materials. The study also delves into the significant implications of these findings, including the quantification of intrinsic tensile strength in quasi-brittle materials and the understanding of tensile strength variations under diverse stress concentrations and loading conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3