Abstract
Pinch-outs refers to the gradual thinning of the thickness of the sedimentary layer laterally until there is no deposition and are a major topic of modern research on the automated drawing of geological profiles. The rapid development of smart geological systems imposed an urgent need for high-speed, accurate methods to plot pinch-outs. However, because of their complexity, excessive number of branch paths, low rendering speed, and poor reliability in the case of large-scale data, the existing pinch-out drawing methods are inadequate and cannot satisfy the modeling needs of large-scale geological projects. To resolve these problems, based on unified stratigraphic sequences, this paper proposes a unique path method for drawing pinch-out profiles by converting the principle of plotting of pinch-outs into controlling the appearance of stratigraphic boundaries, and a high-speed and reliable method for drawing pinch-out in digital profiles is also proposed. The proposed method is successfully applied to drawing geological profiles for an urban geological project in East China, and greatly reduces the complexity of the method without reducing the drawing accuracy. Compared with those of other methods, the speed and reliability are significantly improved. Therefore, the unique path method for drawing pinch-out profiles based on a unified stratigraphic sequence proposed in the writers’ previous paper effectively avoids the excessive branch paths, slow speed, and insufficient reliability of the existing methods and provides effective and reliable support for the rapid drawing of profiles in smart geological systems.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Key Project of Applied Science & Technology Research and Development of Guangdong Province, China
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献