Characteristics and Distribution of Landslides in the Populated Hillslopes of Bujumbura, Burundi

Author:

Kubwimana Désiré,Ait Brahim Lahsen,Nkurunziza Pascal,Dille Antoine,Depicker Arthur,Nahimana Louis,Abdelouafi Abdellah,Dewitte OlivierORCID

Abstract

Accurate and detailed multitemporal inventories of landslides and their process characterization are crucial for the evaluation of landslide hazards and the implementation of disaster risk reduction strategies in densely-populated mountainous regions. Such investigations are, however, rare in many regions of the tropical African highlands, where landslide research is often in its infancy and not adapted to the local needs. Here, we have produced a comprehensive multitemporal investigation of the landslide processes in the hillslopes of Bujumbura, situated in the landslide-prone East African Rift. We inventoried more than 1200 landslides by combining careful field investigation and visual analysis of satellite images, very-high-resolution topographic data, and historical aerial photographs. More than 20% of the hillslopes of the city are affected by landslides. Recent landslides (post-1950s) are mostly shallow, triggered by rainfall, and located on the steepest slopes. The presence of roads and river quarrying can also control their occurrence. Deep-seated landslides typically concentrate in landscapes that have been rejuvenated through knickpoint retreat. The difference in size distributions between old and recent deep-seated landslides suggests the long-term influence of potentially changing slope-failure drivers. Of the deep-seated landslides, 66% are currently active, those being mostly earthflows connected to the river system. Gully systems causing landslides are commonly associated with the urbanization of the hillslopes. Our results provide a much more accurate record of landslide processes and their impacts in the region than was previously available. These insights will be useful for land management and disaster risk reduction strategies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference76 articles.

1. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools

2. Landslide occurrences in the hilly areas of Rwanda, their causes and protection measures;Bizimana;Disaster Sci. Eng.,2015

3. Landslide resilience in Equatorial Africa: Moving beyond problem identification!

4. Contextualizing vulnerability assessment: a support to geo-risk management in central Africa

5. Vulnerability of buildings exposed to landslides: A spatio-temporal assessment in Bukavu (DR Congo);Balegamire;Geo- Eco-Trop,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3