Reducing Statistical Uncertainty in Elastic Settlement Analysis of Shallow Foundations Relying on Targeted Field Investigation: A Random Field Approach

Author:

Christodoulou PanagiotisORCID,Pantelidis LysandrosORCID

Abstract

The present paper deals with the practical problem of reducing statistical uncertainty in elastic settlement analysis of shallow foundations by relying on targeted field investigation with the aim of an optimal design. In a targeted field investigation, the optimal number and location of sampling points are known a priori. As samples are taken from the material field (i.e., the ground), which simultaneously is a stress field (stresses caused by the footing), the coexistence of these two fields allows for some points in the ground to better characterize the serviceability state of structure. These points are identified herein through an extensive parametric analysis of the factors controlling the magnitude of settlement; the number of different cases considered was 3318. This is done in an advanced probabilistic framework using the Random Finite Element Method (RFEM) properly considering sampling of soil property values. In this respect, the open source RSETL2D program, which combines elastic finite element analysis with the theory of random fields, has been modified as to include the function of sampling of soil property values from the generated random fields and return the failure probability of footing against excessive settlement. Two sampling strategies are examined: (a) sampling from a single point and (b) sampling a domain (the latter refers to e.g., continuous cone penetration test data). As is shown in this work, by adopting the proper sampling strategy (defined by the number and location of sampling points), the statistical error can be significantly reduced. The error is quantified by the difference in the probability of failure comparing different sampling scenarios. Finally, from the present analysis, it is inferred that the benefit from a targeted field investigation is much greater as compared to the benefit from the use of characteristic values in a limit state design framework.

Funder

Cyprus University of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3