Mapping Gully Erosion Variability and Susceptibility Using Remote Sensing, Multivariate Statistical Analysis, and Machine Learning in South Mato Grosso, Brazil

Author:

Bouramtane TarikORCID,Hilal Halima,Rezende-Filho Ary TavaresORCID,Bouramtane Khalil,Barbiero LaurentORCID,Abraham Shiny,Valles Vincent,Kacimi IliasORCID,Sanhaji Hajar,Torres-Rondon Laura,de Castro Domingos DantasORCID,Vieira Santos Janaina da Cunha,Ouardi Jamila,Beqqali Omar El,Kassou Nadia,Morarech MoadORCID

Abstract

In Brazil, the development of gullies constitutes widespread land degradation, especially in the state of South Mato Grosso, where fighting against this degradation has become a priority for policy makers. However, the environmental and anthropogenic factors that promote gully development are multiple, interact, and present a complexity that can vary by locality, making their prediction difficult. In this framework, a database was constructed for the Rio Ivinhema basin in the southern part of the state, including 400 georeferenced gullies and 13 geo-environmental descriptors. Multivariate statistical analysis was performed using principal component analysis (PCA) to identify the processes controlling the variability in gully development. Susceptibility maps were created through four machine learning models: multivariate discriminant analysis (MDA), logistic regression (LR), classification and regression tree (CART), and random forest (RF). The predictive performance of the models was analyzed by five evaluation indices: accuracy (ACC), sensitivity (SST), specificity (SPF), precision (PRC), and Receiver Operating Characteristic curve (ROC curve). The results show the existence of two major processes controlling gully erosion. The first is the surface runoff process, which is related to conditions of slightly higher relief and higher rainfall. The second also reflects high surface runoff conditions, but rather related to high drainage density and downslope, close to the river network. Human activity represented by peri-urban areas, construction of small earthen dams, and extensive rotational farming contribute significantly to gully formation. The four machine learning models yielded fairly similar results and validated susceptibility maps (ROC curve > 0.8). However, we noted a better performance of the random forest (RF) model (86% and 89.8% for training and test, respectively, with an ROC curve value of 0.931). The evaluation of the contribution of the parameters shows that susceptibility to gully erosion is not governed primarily by a single factor, but rather by the interconnection between different factors, mainly elevation, geology, precipitation, and land use.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3