Abstract
The investigation of mass movements is of major interest in mountain regions as these events represent a significant hazard for people and cause severe damage to crucial infrastructure. The torrential rainfall event that mainly occurred on the 14 July 2021 in western Central Europe not only led to severe flooding catastrophes (e.g., Meuse, Ahr and Erft rivers) but also triggered hundreds of mass movements in the low mountain range. Here, we investigate a hillslope debris flow that occurred in Biersdorf in the Eifel area (Rhenish Massif, Rheinland-Pfalz) using a comprehensive geomorphological–geophysical approach in order to better understand the triggering mechanisms and process dynamics. We combined field studies by means of Electrical Resistivity Tomography (ERT), Direct Push Hydraulic Profiling (HPT) and sediment coring with UAV-generated photogrammetry, as well as debris flow runout modelling. Our results show that for the Biersdorf hillslope debris flow, the geomorphological and geotectonic position played a crucial role. The hillslope debris flow was triggered at a normal fault separating well-draining limestones of the Lower Muschelkalk, from dense weathered clay and sandstones of the Upper Buntsandstein. The combination of a large surface runoff and strong interflow at the sliding surface caused a transformation from an initial translational slide into the high-energy and widespread hillslope debris flow. We further created and validated a stand-alone model of the debris flow on a local scale achieving promising results. The model yields a 97% match to the observed runout area as well as to deposition spreads and heights. Thus, our study provides a pathway for analyzing hillslope debris flows triggered by torrential rainfall events in low mountain ranges. General knowledge on hillslope debris flows, risk assessment and hazard prevention were improved, and results can be transferred to other regions to improve risk assessment and hazard prevention.
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献