Molecular Indicators of Sources and Biodegradation of Organic Matter in Sediments of Fluid Discharge Zones of Lake Baikal

Author:

Morgunova InnaORCID,Semenov PetrORCID,Kursheva Anna,Litvinenko Ivan,Malyshev Sergey,Bukin SergeyORCID,Khlystov Oleg,Pavlova Olga,Zemskaya TamaraORCID,Krylov Alexey A.ORCID

Abstract

This paper performs a detailed study of a wide set of organic-geochemical proxies in 15 sediment cores collected from the main basins of Lake Baikal (the northern, the central and the southern) where processes of focused fluid discharge were detected. A variety of studied zones includes sites with gas and hydrothermal seepage, mud volcanoes with or without gas-oil fluid discharge, gas hydrates and authigenic carbonates. The composition of the dispersed organic matter and individual hydrocarbon molecular markers (n-alkanes, dimethyl alkanes, isoprenoids, steranes, terpanes and polycyclic aromatic hydrocarbons) testify to the input from predominantly allochthonous terrestrial and autochthonous microbial and algal sources. The studied sources, maturity and biodegradation parameters of organic matter vary significantly for areas with different fluid discharge. The composition of specific biomarkers including isoprenoids and immature hopanoids reflects the lateral and vertical changes of microbial activity in sediments associated with various environmental conditions. The identified types of terpanes distribution (mature, mixed and immature) correlate well with types of fluid discharge and attest to the development of various methanogenic and methanotrophic microbial communities in sediments. Moreover, the revealed specificity of microbial molecular markers distribution allowed us to suggest the fluid discharge processes in zones where they were not previously detected.

Funder

Russian Science Foundation

state assignment

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference129 articles.

1. Deep drilling on Lake Baikal: Main results;Kuz’min;Russ. Geol. Geophys.,2001

2. Gas seeps in Lake Baikal—detection, distribution, and implications for water column mixing

3. Gas hydrate of Lake Baikal: Discovery and varieties

4. Geologic history of Lake Baikal;Mats;Priroda,2017

5. Methane in water and bottom sediments of lake Baikal

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3