Melting Processes of Pelitic Rocks in Combustion Metamorphic Complexes of Mongolia: Mineral Chemistry, Raman Spectroscopy, Formation Conditions of Mullite, Silicate Spinel, Silica Polymorphs, and Cordierite-Group Minerals

Author:

Peretyazhko Igor S.1ORCID,Savina Elena A.1

Affiliation:

1. Vinogradov Institute of Geochemistry, Russian Academy of Sciences, Siberian Branch, 664033 Irkutsk, Russia

Abstract

Melted rocks (clinkers and paralavas) of the Mongolian combustion metamorphic (CM) complexes were formed during modern and ancient (since the Quaternary) wild-fires of brown coal layers in the sedimentary strata of the Early Cretaceous Dzunbain Formation. According to XRD, Raman spectroscopy, and SEM-EDS data, cordierite, sekaninaite, indialite, ferroindialite, silica polymorphs, mullite, Fe-mullite, anhydrous Al-Fe-Mg silicate spinel (presumably new mineral), and other phases were identified. It has been established that isomorphic impurity of potassium in the cordierite-group minerals does not correlate with their crystal structure (hexagonal or orthorhombic). Indialite and ferroindialite retained their hexagonal structure in some fragments of the CM rocks, possibly due to the very fast cooling of local zones of sedimentary strata and the quenching of high-temperature K-rich peraluminous melt. Clinkers, tridymite–sekaninaite, and cristobalite–fayalite ferroan paralavas were produced by partial melting of Fe-enriched pelitic rocks (mudstone, siltstone, and silty sandstone) in a wide temperature range. The formation of mullite, Fe-mullite, and Al-Fe-Mg silicate spinel in clinkers developed from dehydration–dehydroxylation and incongruent partial melting of Fe-enriched pelitic matter (Al-Mg-Fe-rich phyllosilicates, ‘meta-kaolinite’, and ‘meta-illite’). Large-scale crystallization of these minerals in the K-rich peraluminous melts occurred, presumably, in the range of T > 850–900 °C. The subsurface combustion of coal layers heated the overburden pelitic rocks from sedimentary strata to T > 1050 °C (judging by the formation of cordierite-group minerals) or locally till the melting point of detrital quartz grains at T > 1300 °C and, possibly, till the stability field of stable β-cristobalite at T > 1470 °C. Ferroan paralavas were formed during the rapid crystallization of Fe-rich silicate melts under various redox conditions. From the analysis of the liquidus surface in the Al2O3–FeO–Fe2O3–SiO2 major-oxide system, it follows that the least high-temperature (<1250 °C) and the most oxidizing conditions occurred during the crystallization of mineral assemblages in the most-enriched iron silicate melts parental for cristobalite–fayalite paralava.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3