Comparative Study of Deterioration in Built Heritage in a Coastal Area: Barbanza Peninsula (Galicia, NW Spain)

Author:

Hernández Ana C1,Sanjurjo-Sánchez Jorge1ORCID,Alves Carlos2ORCID,Figueiredo Carlos A. M.3ORCID

Affiliation:

1. Instituto Universitario de Xeoloxía “Isidro Parga Pondal”, Edificio Servizos Centrais de Investigación, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain

2. LandS/Lab2PT-Landscapes, Heritage and Territory Laboratory (FCT-UIDB/04509/2020), Earth Sciences Department, School of Sciences, University of Minho, 4710-057 Braga, Portugal

3. CERENA—Centre for Natural Resources and the Environment, FCT-UIDB/04028/2020, DEcivil, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal

Abstract

The Barbanza Peninsula (Galicia, NW Spain) is located on the west coast of Galicia. It is a narrow tongue of terrain with an area of 416 km2 and a high altitudinal gradient, with the top having a maximum height of more than 600 m at a distance of less than 5 Km from the sea. As a result of this, there is a significant rainfall gradient (from 900 to more than 3300 mm per year). In the peninsula, there are valuable historical buildings built with granite rock that show variable decay patterns. In this work, we have considered 14 of them, located in several parts of the peninsula, and we have studied their deterioration patterns. Some of them are close to the sea, with sea salt being a possible cause of decay, while for those located far from the sea, the high humidity and rainfall can be the most important cause of decay. A macroscopic study was carried out to determine the deterioration patterns. We have also analyzed the possible role of salts in the decay by using X-ray fluorescence as a screening technique to assess the presence of salts and the possible correlation of salts with the distance to the sea and using scanning electron microscopy to directly identify salts in some of the buildings. The most frequently reported decay is due to lichen growth (biological colonization). Depending on the proximity to the coast, the study area was divided into two zones: zone 1, closer to the sea (<1 km), with an important influence of sea salts and wind, and zone 2, further from the sea, with higher altitudes (center of the peninsula) and important rainfall, humidity, and therefore, biological colonization of stone surfaces. Crusts (to a lesser degree, because it is a mainly rural area) are more frequent in zone 1, but the state of conservation of stone in zone 1 is better than that in zone 2, possibly due to the concentration of urban centers in this zone and more interventions for cleaning stone surfaces. Finally, although we did not observe clear patterns in the appearance of salts in the buildings in agreement with the distance to the sea, we observed different patterns of salts in two of the buildings, one in each zone, which clearly show that, to some extent, salts are involved in decay.

Funder

Consellería de Cultura, Educacion, e Ordenacion Universitaria, Xunta de Galicia, Spain

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3