Analysis of Very High Spatial Resolution Images for Automatic Shoreline Extraction and Satellite-Derived Bathymetry Mapping

Author:

Randazzo Giovanni,Barreca Giovanni,Cascio Maria,Crupi Antonio,Fontana Marco,Gregorio Francesco,Lanza Stefania,Muzirafuti AnselmeORCID

Abstract

The amount of Earth observation images available to the public has been the main source of information, helping governments and decision-makers tackling the current world’s most pressing global challenge. However, a number of highly skilled and qualified personnel are still needed to fill the gap and help turn these data into intelligence. In addition, the accuracy of this intelligence relies on the quality of these images in times of temporal, spatial, and spectral resolution. For the purpose of contributing to the global effort aiming at monitoring natural and anthropic processes affecting coastal areas, we proposed a framework for image processing to extract the shoreline and the shallow water depth on GeoEye-1 satellite image and orthomosaic image acquired by an unmanned aerial vehicle (UAV) on the coast of San Vito Lo Capo, with image preprocessing steps involving orthorectification, atmospheric correction, pan sharpening, and binary imaging for water and non-water pixels analysis. Binary imaging analysis step was followed by automatic instantaneous shoreline extraction on a digital image and satellite-derived bathymetry (SDB) mapping on GeoEye-1 water pixels. The extraction of instantaneous shoreline was conducted automatically in ENVI software using a raster to vector (R2V) algorithm, whereas the SDB was computed in ArcGIS software using a log-band ratio method applied on the satellite image and available field data for calibration and vertical referencing. The results obtained from these very high spatial resolution images demonstrated the ability of remote sensing techniques in providing information where techniques using traditional methods present some limitations, especially due to their inability to map hard-to-reach areas and very dynamic near shoreline waters. We noticed that for the period of 5 years, the shoreline of San Vito Lo Capo sand beach migrated about 15 m inland, indicating the high dynamism of this coastal area. The bathymetric information obtained on the GeoEye-1 satellite image provided water depth until 10 m deep with R2 = 0.753. In this paper, we presented cost-effective and practical methods for automatic shoreline extraction and bathymetric mapping of shallow water, which can be adopted for the management and the monitoring of coastal areas.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3