Estimation of Vs Structure of Krueng Aceh and its Suburb Basin of Aceh Province, Indonesia, Derived from Microtremor Measurements

Author:

Asrillah AsrillahORCID,Marwan Marwan,Muksin Umar,Ibnu Rusydy,Takao Sasaki,Yoshinori Furumoto,Yuichiro Minami,Chisa Hikime

Abstract

The Aceh and Seulimeum Faults flank the Krueng Aceh Basin in Indonesia, and the shear-wave velocity (Vs) structure of the basin is not extensively available. Understanding the Vs structure is very important in order to figure out how the basin structures seemingly appear, and this can eventually be used to generate a microzonation map for other forthcoming studies. To provide this, Vs was measured over an area approximately covering Banda Aceh City and its surroundings, by setting two lines consisting of eight points projected in the NW–SE and SW–NE orientations. This research aims to facilitate the approximation of the Vs structure characteristics of the Krueng Aceh Basin using the microtremor array method (MAM). Triangular configurations were set by deploying four seismometers following an M-station geometry for three different array sizes (i.e., 3, 10, and 30 m in distance). The data were then processed by utilizing the spatial autocorrelation (SPAC) technique. The result shows that the Vs structure generally dips down from SE to NW, and it gradually declines from SW to NE. The combination of these Vs structures tends to be oblique toward the SW–NE direction. This form may be affected by the Aceh Segment Fault which is more active than the Seulimeum Segment Fault. The average maximum penetration depth and Vs are 603 m and 947.5 m/s in the SE–NW orientation, and 650 m and 958 m/s in the SW–NE direction. Generally, the thickness of the strata is greater in the upstream area compared to the downstream area. Their composition consists of alluvium (A) at the uppermost layer and diluvium (D) at the underlying layers. Then, all of the identified strata are aged from the Pleistocene to Tertiary Pleistocene (Tp). These characteristics of the strata could potentially cause surface damages as a result of site effect responses when an earthquake is occurring.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3