Abstract
We present a methodology for a numerical analysis of three-dimensional tomographic images in this paper. The methodology is based on integral geometry, topology, and morphological analysis methods. It involves calculating cumulative and non-cumulative pore size distributions of Minkowski functionals and Betti numbers. We investigated 13 samples in dry and wet (saturated beyond the field capacity) conditions within different horizons of the Phaeozem albic. For samples of the arable horizon, an increase in the Euler characteristic was observed in the process of wetting. For samples from the A2, AB and B2 horizons, the Euler-Poincare characteristic decreased during wetting. It has been proven that both Betti numbers (number of isolated pores and number of “tunnels”) decrease with swelling of the AB and B2 horizons at a depth of 20–90 cm. For samples from the arable horizon, another dependence was observed: A Betti number of zero increased first but decreased during wetting. Based on the change in topological characteristics, two methods of changing the topology of the void space of the soil were demonstrated. The above-described quantitative changes of proposed parameters of pore space tomographic images prove the possibility and progressiveness of their usage for the pore space transformation estimate.
Funder
Russian Foundation for Basic Research
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献