Mire Development and Disappearance due to River Capture as Hydrogeological and Geomorphological Consequences of LGM Ice-Marginal Valley Evolution at the Vistula-Neman Watershed

Author:

Wierzbicki Grzegorz,Grygoruk MateuszORCID,Grodzka-Łukaszewska MariaORCID,Bartold Piotr,Okruszko Tomasz

Abstract

The advances and retreats of ice sheets during Pleistocene significantly changed high- and mid-latitude landscapes and hydrological systems, albeit differently, in North America and Europe. On the southern margin of the Last Glacial Maximum (LGM) in the Baltic Sea basin, a specific type of valley has developed between glacial margins and upland or mountain slopes. We studied new geological data (boreholes, electrical resistivity imaging (ERI) from this geomorphic setting in Northeast Poland to understand: (1) how the landscape and river network evolved to eventually produce peat mires during the Holocene, and (2) the nature of groundwater recharge to fens in the upper Biebrza Valley. We present the results on a geological cross-section with hydrogeological interpretation. We also discuss regional geomorphology. In addition, we present the LGM extent derived from a spatial distribution of Vistulian (Weichselian) terminal moraines. These end moraines are also interpreted as Saalian kames. Thus, we additionally present another method of LGM extent delineation from a physicogeographical division. We link the steep slopes of the studied valley walls (kame terrace fronts) with thermokarst erosion in the periglacial zone. We then document the hydrogeological window (DISCONTINUITY in the till layer over the confined aquifer), which enables the outflow of groundwater into the peat bog. Although minerotrophic fen mire development in the study area is likely to be sustained in the near future through sufficient groundwater supply, the projected capture of the Biebrza River by the Neman River will not allow for sustaining peatland development.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3