Application of Nonhydraulic Delineation Method of Flood Hazard Areas Using LiDAR-Based Data

Author:

Ureta J. CarlORCID,Zurqani Hamdi A.ORCID,Post Christopher J.,Ureta JoanORCID,Motallebi Marzieh

Abstract

Fluvial dynamics are an important aspect of land-use planning as well as ecosystem conservation. Lack of floodplain and flood inundation maps can cause severe implication on land-use planning and development as well as in disaster management. However, flood hazard delineation traditionally involves hydrologic models and uses hydraulic data or historical flooding frequency. This entails intensive data gathering, which leads to extensive amount of cost, time, and complex models, while typically only covers a small portion of the landscape. Therefore, alternative approaches had to be explored. This study explores an alternative approach in delineating flood hazard areas through a straightforward interpolation process while using high-resolution LiDAR-based datasets. The objectives of this study are: (1) to delineate flood hazard areas through a straightforward, nonhydraulic, and interpolation procedure using high-resolution (LiDAR-based) datasets and (2) to determine whether using high-resolution data, coupled with a straightforward interpolation procedure, will yield reliable potential flood hazard maps. Results showed that a straightforward interpolation method using LiDAR-based data produces a reliable potential flood zone map. The resulting map can be used as supplementary information for rapid analysis of the topography which could have implications in area development planning and ecological management and best practices.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3