High-Resolution Lidar-Derived DEM for Landslide Susceptibility Assessment Using AHP and Fuzzy Logic in Serdang, Malaysia

Author:

Okoli Jude1ORCID,Nahazanan Haslinda1,Nahas Faten2,Kalantar Bahareh3ORCID,Shafri Helmi Zulhaidi Mohd1,Khuzaimah Zailani4

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia

2. Geography Department, College of Arts, King Saud University, Riyadh 1145, Saudi Arabia

3. RIKEN Center for Advanced Intelligence Project, Goal-Oriented Technology Research Group, Disaster Resilience Science Team, Tokyo 103-0027, Japan

4. Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Malaysia

Abstract

Landslide impact is potentially hazardous to an urban environment. Landslides occur at certain slope levels over time and require practical slope analysis to assess the nature of the slope where a landslide is likely to occur. Thus, acquiring very high-resolution remote sensing data plays a significant role in determining the slope surface. For this study, 12 landslide conditioning parameters with 10 × 10 cell sizes that have never been previously collectively applied were created. These factors were created directly from the LiDAR (Light Detection and Ranging) DEM (digital elevation model)using their layer toolboxes, which include slope, aspect, elevation, curvature, and hill shade. Stream power index (SPI), topographic wetness index (TWI), and terrain roughness index (TRI) were created from spatial layers such as slope, flow direction, and flow accumulation. Shapefiles of distances to roads, lakes, trees, and build-up were digitized as land use/cover from the LiDAR image and produced using the Euclidean distance method in ArcGIS. The parameters were selected based on expert knowledge, previous landslide literature, and the study area characteristics. Moreover, multicriteria decision-making analysis, which includes the analytic hierarchy process (AHP) and fuzzy logic approaches not previously utilized with a LiDAR DEM, was used in this study to predict the possibility of a landslide. The receiver operating characteristics (ROC) were used for the validation of results. The area under the curve (AUC) values obtained from the ROC method for the AHP and fuzzy were 0.859 and 0.802, respectively. The final susceptibility results will be helpful to urban developers in Malaysia and for sustainable landslide hazard mitigation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3