Drones over the “Black Desert”: The Advantages of Rotary-Wing UAVs for Complementing Archaeological Fieldwork in the Hard-to-Access Landscapes of Preservation of North-Eastern Jordan

Author:

Smith Stefan L.ORCID

Abstract

The increasing availability and sinking costs of unmanned aerial vehicles (UAVs), commonly known as drones, has resulted in these devices becoming relatively commonplace on archaeological sites. The advantages of being able to rapidly obtain bespoke high-resolution images from the air are conspicuous to anyone familiar with archaeological fieldwork; meanwhile the possibilities of subsequently processing such images together with their metadata to obtain digital elevation models (DEMs) and three-dimensional (3-D) models provide additional bonuses to analysis and interpretation. The recent use of a rotary-wing drone by the Western Harra Survey (WHS), an archaeological project co-directed by the author in the “Black Desert”, or Harra, of north-eastern Jordan, showcases these advantages in the context of a landscape that (a) is subject to negligible transformation processes and (b) is difficult to access, both by vehicle and on foot. By using processed drone imagery to record in detail prehistoric basalt structures visible on the surface and their surroundings, morphological site typologies hypothesised from satellite imagery were confirmed, relative dating within sites ascertained, structural features and damage documented, spatial relationships to natural resources established, offsite features traced, modern threats to heritage catalogued, and practically inaccessible sites investigated. Together, these results, most of which were only obtainable and all of which were obtained more rapidly by using a drone, represent significant insights into this underrepresented region, and provide a case-study for the benefits of these devices in other landscapes of a similar nature.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3