Tracking the Deep Biosphere through Time

Author:

Drake HenrikORCID,Ivarsson Magnus,Heim ChristineORCID

Abstract

The oceanic and continental lithosphere constitutes Earth’s largest microbial habitat, yet it is scarcely investigated and not well understood. The physical and chemical properties here are distinctly different from the overlaying soils and the hydrosphere, which greatly impact the microbial communities and associated geobiological and geochemical processes. Fluid–rock interactions are key processes for microbial colonization and persistence in a nutrient-poor and extreme environment. Investigations during recent years have spotted microbial processes, stable isotope variations, and species that are unique to the subsurface crust. Recent advances in geochronology have enabled the direct dating of minerals formed in response to microbial activity, which in turn have led to an increased understanding of the evolution of the deep biosphere in (deep) time. Similarly, the preservation of isotopic signatures, as well as organic compounds within fossilized micro-colonies or related mineral assemblages in voids, cements, and fractures/veins in the upper crust, provides an archive that can be tapped for knowledge about ancient microbial activity, including both prokaryotic and eukaryotic life. This knowledge sheds light on how lifeforms have evolved in the energy-poor subsurface, but also contributes to the understanding of the boundaries of life on Earth, of early life when the surface was not habitable, and of the preservation of signatures of ancient life, which may have astrobiological implications. The Special Issue “Tracking the Deep Biosphere through Time” presents a collection of scientific contributions that provide a sample of forefront research in this field. The contributions involve a range of case studies of deep ancient life in continental and oceanic settings, of microbial diversity in sub-seafloor environments, of isolation of calcifying bacteria as well as reviews of clay mineralization of fungal biofilms and of the carbon isotope records of the deep biosphere.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3