Abstract
The hoist assembly based on the Koeppe friction is a commonly used solution in mining. However, it has some disadvantages. A few centimeters offset of the groove axis can lead to excessive abrasion of linings on the Koeppe friction and pulleys. As a consequence, the mines are forced to bear the direct and indirect costs of replacing the linings such as the cost of materials and service as well as the cost of extended machine and shaft downtime. Last year, the authors undertook a geodetic inventory of the condition of two hoisting machines with a Koeppe winder. Terrestrial laser scanning enhanced with precision total station measurements were performed. Additionally, elements particularly important for the performed analysis (inclination of hoisting machine and rope wheels shafts) were determined by the precision leveling technique. Obtained results were verified using measurements on Szpetkowski’s tribrach. Appropriate selection of the measurement methods in both analyzed examples allowed us to determine the causes of destruction of each hoist assembly component. Based on precise geodetic data, guidelines have been defined for rectification (twisting and shifting the rope pulleys), which seems unavoidable despite the lack of unambiguous legal regulations.
Subject
General Earth and Planetary Sciences