Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry

Author:

Ershova Victoria123ORCID,Prokopiev Andrei3ORCID,Stockli Daniel4

Affiliation:

1. Institute of Earth Sciences, Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia

2. Geological Institute of Russian Academy of Sciences, Pyzhevski Lane 7, Moscow 119017, Russia

3. Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences, Lenin av. 39, Yakutsk 677000, Russia

4. Department of Geological Sciences, Jackson School of Geoscience, University of Texas at Austin, Austin, TX 78712-1692, USA

Abstract

Provenance study plays an important role in paleogeographic and tectonic reconstructions. Detrital zircons are commonly used to identify sediment provenance; however, a wide range of detrital zircon ages in clastic rock often represent a fingerprint of reworked older terrigenous successions rather than ages of magmatism and metamorphism in the provenance area. This study focuses on the provenance of detrital rutile grains in the Triassic–Jurassic sandstones from Franz Josef Land and shows the importance of multiproxy approaches for provenance studies. Trace element data demonstrate that most rutile grains were sourced from metapelitic rocks, with a subordinate population having a metamafic origin. The Zr-in-rutile thermometer and U-Pb geochronology suggest that detrital rutile grains were predominantly derived from rocks that underwent amphibolite facies metamorphism during the Paleozoic era, with a predominance of the Carboniferous–Permian ages. Therefore, we suggest that the provenance area for the studied sandstones on Franz Josef Land has a similar geological history to the Taimyr region and Severnaya Zemlya archipelago. We propose that this crustal domain extends across the Kara Sea and forms the basement to the north and east of FJL, representing a proximal provenance for the studied Mesozoic terrigenous rocks. This domain experienced both Middle–Late Ordovician and Carboniferous–Permian metamorphism. The comparison of U-Pb dating and the geochemistry of rutile, U-Th/He, and U-Pb dating of zircons showed that detrital rutiles are the powerful toll in provenance restoration and can give additional constrains when a provenance area locates within collisional-convergent settings.

Funder

RSF

DPMGI SB RAS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3