A Multiphysics Simulation of the Effects of Wicking Geotextile on Mitigating Frost Heave under Cold Region Pavement

Author:

Jiang Yusheng1,Alajlan Zaid1,Zapata Claudia2,Yu Xiong1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Bingham 203C, Cleveland, OH 44106, USA

2. School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85042, USA

Abstract

Geotextile offers numerous benefits in improving pavement performance, including drainage, barrier functionality, filtration, and reinforcement. Wicking geotextile, a novel variant in this category, possesses the intrinsic ability to drain water autonomously from soils. This paper details the development and application of a comprehensive multiphysics model that simulates the performance of wicking geotextile within a pavement system under freezing climates. The model considers the inputs of various environmental dynamics, including the impact of meteorological factors, groundwater levels, ground heat, and drainage on the pavement system. The model was firstly validated using field data from a long-term pavement performance (LTPP) road section in the cold region. It was subsequently applied to assess the impacts of wicking geotextile if it was installed on the road section. The model simulated the coupled temporal and spatial variations in soil moisture content and temperature. The simulation results demonstrated that wicking geotextile would create a suction zone around its installation location to draw water from surrounding soils, therefore reducing the overall unfrozen water content in the pavement. The results also showed that the installation of wicking geotextile would delay the initiation of frost heave and reduce its magnitude in cold region pavement.

Funder

National Science Foundation

National Cooperative Highway Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3