The Role of Cover Thickness in the Rainfall-Induced Landslides of Nocera Inferiore 2005

Author:

Coppola Lucia,Reder AlfredoORCID,Rianna GuidoORCID,Pagano Luca

Abstract

In the context of rainfall-induced landslides involving pyroclastic soils, the present work analyzes the influence of cover thickness on slope stability conditions. To this aim, the slope failure that occurred in Nocera Inferiore (4th March 2005) is selected as a reference test case, providing the actual weather forcing history that preceded the event, the hydraulic characterization of the soil involved, and the lowermost boundary condition (variously fractured calcareous bedrock underlying the cover). By maintaining unchanged soil hydraulic properties, the relationship between domain thickness, initial soil suction distribution, and slope instability induced by critical rainfall is investigated by numerical analyses. These refer to a rigid unsaturated domain subject to one dimensional flow conditions under the effects of incoming (precipitation) and outcoming (evaporation) fluxes applied at the uppermost boundary. The main outcomes indicate that critical event duration increases significantly with increasing the domain thickness. This relationship is strongly influenced by initial suction distribution. A linear relationship results for soil suction that is assumed to be constant at the beginning of the critical event. However, this relationship is quadratic if, by simulating the actual antecedent meteorological conditions, suction at the beginning of the critical event is the main function of the domain thickness. Additional numerical analyses were carried out to characterize the influence of a different lowermost boundary condition. Outcomes indicate that, for the same thickness, critical duration is substantially longer if the cover contact is with the same material as that of the cover.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3