Glacier–Permafrost Interaction at a Thrust Moraine Complex in the Glacier Forefield Muragl, Swiss Alps

Author:

Kunz Julius,Kneisel Christof

Abstract

The internal structures of a moraine complex mostly provide information about the manner in which they develop and thus they can transmit details about several processes long after they have taken place. While the occurrence of glacier–permafrost interactions during the formation of large thrust moraine complexes at polar and subpolar glaciers as well as at marginal positions of former ice sheets has been well understood, their role in the formation of moraines on comparatively small alpine glaciers is still very poorly investigated. Therefore, the question arises as to whether evidence of former glacier–permafrost interactions can still be found in glacier forefields of small alpine glaciers and to what extent these differ from the processes in finer materials at larger polar or subpolar glaciers. To investigate this, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) surveys were carried out in the area of a presumed alpine thrust moraine complex in order to investigate internal moraine structures. The ERT data confirmed the presence of a massive ice core within the central and proximal parts of the moraine complex. Using GPR, linear internal structures were detected, which were interpreted as internal shear planes due to their extent and orientation. These shear planes lead to the assumption that the moraine complex is of glaciotectonic origin. Based on the detected internal structures and the high electrical resistivity values, it must also be assumed that the massive ice core is of sedimentary or polygenetic origin. The combined approach of the two methods enabled the authors of this study to detect different internal structures and to deduce a conceptual model of the thrust moraine formation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. Deformation of soils by glacier ice and the influence of pore pressures and permafrost;Mathews;Philos. Trans. R. Soc. Can.,1960

2. Glaciotectonic Landforms and Structures;Aber,1989

3. Groundwater flow beneath ice sheets: Part II — Its impact on glacier tectonic structures and moraine formation

4. The sedimentary and structural evolution of a recent push moraine complex: Holmstrømbreen, Spitsbergen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3