Exploring and Modeling the Magma–Hydrothermal Regime

Author:

Eichelberger JohnORCID,Kiryukhin AlexeyORCID,Mollo SilvioORCID,Tsuchiya NoriyoshiORCID,Villeneuve MarlèneORCID

Abstract

This special issue comprises 12 papers from authors in 10 countries with new insights on the close coupling between magma as an energy and fluid source with hydrothermal systems as a primary control of magmatic behavior. Data and interpretation are provided on the rise of magma through a hydrothermal system, the relative timing of magmatic and hydrothermal events, the temporal evolution of supercritical aqueous fluids associated with ore formation, the magmatic and meteoric contributions of water to the systems, the big picture for the highly active Krafla Caldera, Iceland, as well as the implications of results from drilling at Krafla concerning the magma–hydrothermal boundary. Some of the more provocative concepts are that magma can intrude a hydrothermal system silently, that coplanar and coeval seismic events signal “magma fracking” beneath active volcanoes, that intrusive accumulations may far outlast volcanism, that arid climate favors formation of large magma chambers, and that even relatively dry rhyolite magma can convect rapidly and so lack a crystallizing mush roof. A shared theme is that hydrothermal and magmatic reservoirs need to be treated as a single system.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3