Groundwater Quality Assessment Using Fuzzy-AHP in An Giang Province of Vietnam

Author:

Minh ,Avtar ,Kumar ,Tran ,Ty ,Behera ,Kurasaki

Abstract

Along with rapid population growth in Vietnam, there is an increasing dependence on groundwater for various activities. An Giang province is known to be one of the agricultural intensification areas of The Vietnamese Mekong Delta (VMD). This study aimed to evaluate the spatiotemporal variation of groundwater quality for a period of ten years from 2009 to 2018 in An Giang. The weighted groundwater quality index (GWQI) was developed based on the fuzzy analytic hierarchy process (Fuzzy-AHP) for assigning weighted parameters. The results show that that shallow wells in the Northeast and Southeast regions of An Giang were mostly categorized under “bad water” quality with high arsenic (As) concentration over the years partly due to huge amounts of sediment deposition in monsoon season. Overall, the reason for the poor groundwater quality in An Giang was the combined effect of both natural and human activities. On the other hand, we detected high values of GWQI links with high As concentration in areas where people extract more groundwater for irrigation. Temporal variation of GWQI suggested that groundwater quality at eight wells has improved from 2009 to 2018 in the wet season as compared to the dry season. The reason behind the improvement of groundwater quality during wet season was the decrease in river discharge, which causes less deposition of suspended solids near the flood plains. Moreover, the filling of unused wells can reduce the movement of pollutants from unused wells to groundwater aquifers. Although there was not sufficient evidence to show the relationship between As and sediment concentration, the temporal reduction trend in river discharge and suspended solids was detected in An Giang. The understanding of groundwater quality can help policymakers protect and manage limited water resources in the long-term.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3