InSAR-Based Detection of Subsidence Affecting Infrastructures and Urban Areas in Emilia-Romagna Region (Italy)

Author:

Beccaro Lisa1ORCID,Cianflone Giuseppe23ORCID,Tolomei Cristiano1ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, LZ, Italy

2. Dipartimento di Biologia Ecologia e Scienze della Terra (DiBEST), Università della Calabria, Via Ponte Bucci, 87036 Rende, CS, Italy

3. E3 (Earth, Environment, Engineering) Spin-Off, Università della Calabria, Via Ponte Bucci, 87036 Rende, CS, Italy

Abstract

The study of deformation signals associated with seismicity in alluvial plain areas is a challenging topic that, however, is increasingly studied thanks to the great aid given by remote sensing techniques that exploit Synthetic Aperture Radar (SAR) data. This study focuses on the determination of the deformation field within the Emilia-Romagna Region (northern Italy), in the area comprising Modena, Reggio Emilia, and Parma cities. SAR data acquired along both orbits during the Sentinel-1 and Cosmo-SkyMed satellite missions were processed with the Small Baseline Subset interferometric technique from June 2012, after the serious seismic swarm of May 2012, to January 2022, just before the two earthquakes occurred in February 2022. The results, validated with Global Navigation Satellite System measurements, do not highlight displacements correlated with the seismicity but, thanks to their high spatial resolution, it was possible to discriminate areas affected by noticeable subsidence phenomena: (i) the highly industrialized areas located north of the municipalities of Reggio Emilia and Modena cities and (ii) a sector of the high-speed railway sited north of the Reggio Emilia city centre, close to the Reggio Emilia AV Mediopadana station. Here we show that, at least since 2012, the latter area is affected by subsidence which can be related to the secondary consolidation process of the fine soils loaded by the railway embankment. The piezometric level analysis also suggests that the lowering of the groundwater table could accelerate the subsidence rate, affecting the stability of infrastructures in highly populated and industrialized areas.

Funder

ATTEMPT—Integrated System for Multi-Hazard from Space over Mediterranean—INGV research project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3