Locating Cave Entrances Using Lidar-Derived Local Relief Modeling

Author:

Moyes Holley,Montgomery Shane

Abstract

Lidar (Light detection and ranging) scanning has revolutionized our ability to locate geographic features on the earth’s surface, but there have been few studies that have addressed discovering caves using this technology. Almost all attempts to find caves using lidar imagery have focused on locating sinkholes that lead to underground cave systems. As archaeologists, our work in the Chiquibul Forest Reserve, a heavily forested area in western Belize, focuses on locating potential caves for investigation. Caves are an important part of Maya cultural heritage utilized by the ancient Maya people as ritual spaces. These sites contain large numbers of artifacts, architecture, and human remains, but are being looted at a rapid rate; therefore, our goal is to locate and investigate as many sites as possible during our field seasons. While some caves are entered via sinkholes, most are accessed via vertical cliff faces or are entered by dropping into small shafts. Using lidar-derived data, our goal was to locate and investigate not only sinkholes but other types of cave entrances using point cloud modeling. In this article, we describe our method for locating potential cave openings using local relief models that require only a working knowledge of relief visualization techniques. By using two pedestrian survey techniques, we confirmed a high rate of accuracy in locating cave entrances that varied in both size and morphology. Although 100% pedestrian survey coverage delivered the highest rate accuracy in cave detection, lidar image analyses proved to be expedient for meeting project goals when considering time and resource constraints.

Funder

national geographic

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference71 articles.

1. Introduction;Minty,2012

2. Five Days over the Maya Country;Kidder;Sci. Mon.,1930

3. Putting Us on the Map: Remote Sensing Investigation of the Ancient Maya Landscape;Saturno,2007

4. LANDSCAPE ARCHAEOLOGY: Remote-sensing investigation of the ancient Maya in the Peten rainforest of northern Guatemala

5. Mapping exposed and buried drainage systems using remote sensing in the Negev Desert, Israel

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3