Small Scale Rainfall Partitioning in a European Beech Forest Ecosystem Reveals Heterogeneity of Leaf Area Index and Its Connectivity to Hydro-and Atmosphere

Author:

Frischbier NicoORCID,Tiebel KatharinaORCID,Tischer AlexanderORCID,Wagner SvenORCID

Abstract

(1) Background: Leaf area index (LAI) is an essential structural property of plant canopies and is functionally related to fluxes of energy, water, carbon, and light in ecosystems; coupling the biosphere to the geo-, hydro-, and atmosphere. There is an increasing need for more accurate and traceable measurements among several spatial scales of investigation and modelling. We hypothesize that the spatial variability of LAI at the scale of crown sections of a single European beech (Fagus sylvatica L.) tree in a highly structured, mixed European beech-Norway spruce stand can be determined by simultaneous records of precipitation; (2) Methods: Spatially explicit measurements of throughfall were conducted repeatedly below beech and in forest gaps for rain events in leafed and in leafless periods. Subsequent analysis with a new regression approach resulted in estimating leaf and twig water storage capacities (SCleaf/twig) at point level independent of within-crown lateral flow mechanisms. Inverse modelling was used to estimate spatial litterfall (n = 99) distribution and litter production (mass, area, numbers) for single trees, as a function of diameter at breast height; (3) Results: As revealed by a linear mixed-effects model, SCleaf at the center of a beech canopies amounts to 4.9 mm in average and significantly decreases in the direction of the crown edges to an average value of 1.1 mm. Based on diameter-sensitive prediction of litter production, specific leaf area wetting capacity amounts to 0.260 l·m−2. A linear within-canopy dynamic of LAI was found with a mean of 17.6 m2·m−2 in the center and 4.0 m2·m−2 at the edges; and (4) Conclusions: The application of the method provided plausible results and can be extended to further throughfall datasets and tree species. Unravelling the causes and magnitude of spatial- and temporal heterogeneity of forest ecosystem properties contribute to overall progress in geosciences by improving the understanding how the biosphere relates to the hydro- and atmosphere.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3