Monitoring Thermal Activity of the Beppu Geothermal Area in Japan Using Multisource Satellite Thermal Infrared Data

Author:

Mia Md.,Fujimitsu Yasuhiro,Nishijima Jun

Abstract

The Beppu geothermal area, one of the largest spa resorts on the northeast Kyushu Island of Japan, is fed by hydrothermal fluids beneath the volcanic center of Mt. Garan and Mt. Tsurumi in the west. We explored the thermal status of the Beppu geothermal area using nighttime multisource satellite thermal infrared data (TIR) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat 8 thermal infrared scanner (TIRS) to monitor heat loss from 2009 to 2017. We also assessed heat loss from Mt. Garan fumaroles to investigate a relationship between them. The normalized differential vegetation index (NDVI) threshold method of spectral emissivity, the split-window algorithm for land surface temperature (LST), and the Stefan–Boltzmann equation for radiative heat flux (RHF) were used to estimate heat loss in this study. Total heat loss increased by about a 35% trend overall from 2009 to 2015 and then declined about 33–42% in 2017 in both the Beppu geothermal area and Mt. Garan fumaroles overall. The higher thermal anomalies were found in 2015 mostly in the southeastern coastal area of the Beppu geothermal region. The highest thermal anomaly was obtained in 2011 and the lowest in 2017 within the Mt. Garan fumaroles. The areas with a higher range of RHF values were recorded in 2015 in both study areas. Finally, the results show similar patterns of heat loss and thermal anomalies in both the Beppu geothermal area and Mt. Garan fumaroles, indicating a closely connected geothermal system overall. This suggests that nighttime TIR data are effective for monitoring the thermal status of the Beppu geothermal area.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3