Ultrasonic Shaking of Glauconite Pellets with Diverse Reagents for a Comparison of Their K–Ar with Already Published Rb–Sr Results

Author:

Clauer Norbert,Keppens Edward,Uysal I. Tonguç,Aubert Amélie

Abstract

A combined ultrasonic treatment, with de-ionized H2O, dilute HAc or dilute HCl, of three Mid-Miocene glauconite samples was applied to K–Ar date the different separates in order to compare the results with those obtained by the Rb–Sr method using the same three samples and that were analyzed strictly in the same way. Two aliquots yield opposite elemental and K–Ar trends, which suggests different initial mineral compositions for the various pellets. The K–Ar data of two untreated and leached L7 and L8 aliquots are almost within analytical uncertainty from 17.3 ± 0.6 Ma to 19.6 ± 0.7 Ma (2σ), while those of the third L10 sample are slightly higher at 22.1 ± 1.2 Ma (2σ). Comparatively, the earlier published Rb–Sr ages of the three untreated samples and of the leached aliquots gave similar data for the L7 aliquots by an isochron at 18.1 ± 3.1 (2σ) Ma and for the sample L8 by an isochron with an age of 19.6 ± 1.8 (2σ) Ma, while the untreated L10 aliquot yields a very high Rb–Sr date of 42.1 ± 1.6 (2σ) Ma. This untreated L10 glauconite fraction contains blödite, a Sr-rich carbonate that impacted the two isotopic systems differently. Generally, dilute HCl or HAc acids dissolve carbonates, sulfates, sulfites and oxides, while they do not affect the clay-type crystals such as glauconites. These soluble minerals can be identified indirectly, as here, by X-ray diffraction and the amounts of leached Na2O, CaO and Fe2O3 contents. Together with the leaching of some metallic trace elements, those of NaO confirm the leaching of metals and of blödite that are both hosted by the glauconite pellets. The occurrence of this Sr-enriched mineral explains the age differences of the non-treated aliquots and suggests a systematic leaching of any glauconite separate before isotope determination and, possibly, a comparison of the Rb–Sr and K–Ar results. Ultrasonic shaking appears appropriate for physical disaggregation of any contaminating grains that may remain hosted within the pellets, even after a preliminary H2O wash, which may dissolve and remove the soluble minerals but not the H2O-insoluble silicates. The K–Ar study completed here as a complement to a previous Rb–Sr study highlights, again, the importance of the preparation step in isotopic studies of glauconite-type and, by extension, of any clay material, as all occurring minerals can interfere in the final age determinations and, therefore, differently in the mineral assemblages. All those not in isotopic equilibrium need to be removed before analysis, including the soluble Sr or alkali-enriched ones.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference26 articles.

1. Stages of glauconite formation in modern foraminiferal sediments;Ehlmann;Sedim. Petrol.,1963

2. De glauconiarum origine

3. Green clay minerals;Velde,2004

4. Rubidium-Strontium ages of glauconite;Cormier;Bull. Geol. Soc. Am.,1956

5. An explanation for low radiometric ages from glauconite

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3