Robotic Total Station Monitoring in High Alpine Paraglacial Environments: Challenges and Solutions from the Great Aletsch Region (Valais, Switzerland)

Author:

Glueer FranziskaORCID,Loew SimonORCID,Seifert Reto,Aaron Jordan,Grämiger Lorenz,Conzett Stefan,Limpach Philippe,Wieser AndreasORCID,Manconi Andrea

Abstract

Investigating surface displacements in high alpine environments is often subject to challenges due to the difficult accessibility or harsh climatic conditions. Measurement systems have improved greatly in recent years regarding accuracy, range, or energy consumption. Continuously receiving high-precision, real-time monitoring data from a remote location can still support a better understanding of slope dynamics and risk. We present the design, construction, operation, and performance of a complex surface displacement monitoring system installed in the surroundings of the Great Aletsch Glacier in the Swiss Alps, based on two robotic total stations to continuously measure 3D displacements with high accuracies. In addition, GNSS stations are also considered in order to pass from a local to a geographic reference system, as well as to improve the measurement accuracy. The monitoring network is aimed at studying several types of deformation processes, i.e., (i) gravitationally driven and irreversible rockslide movements around the tongue of the Great Aletsch Glacier, (ii) reversible rock slope deformations caused by annual cycles of groundwater recharge and depletion, and (iii) small irreversible deformations of stable rock slopes resulting from progressive rock damage driven by glacier retreat and cyclic hydraulic and thermal loading. We describe the technical details of the monitoring system, which has been in operation successfully for 6 years, and discuss the system performance in terms of its robustness and accuracy.

Funder

Swiss National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3