Correction Factors to Account for Seismic Directionality Effects: Case Study of the Costa Rican Strong Motion Database

Author:

Pinzón Luis A.12ORCID,Hidalgo-Leiva Diego A.3ORCID,Pujades Luis G.4ORCID

Affiliation:

1. Scientific and Technological Research Center, Universidad Católica Santa María La Antigua (USMA), Panama City 0819, Panama

2. Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama City 0824, Panama

3. Earthquake Engineering Laboratory, Universidad de Costa Rica, San Jose 3620-60, Costa Rica

4. Departament d’Enginyeria Civil y Ambiental, Universitat Politècnica de Catalunya Barcelona-Tech (UPC), 08034 Barcelona, Spain

Abstract

This article presents the findings of a study on the directionality effect observed in strong motion records. We set out to establish ratios between several seismic intensity measures that depend on sensor orientation (e.g., GMar, Larger) and others that are orientation-independent (e.g., RotDpp, GMRotDpp, and GMRotIpp), with the intention of proposing multiplicative correction factors. The analysis included an evaluation of the impact of site conditions, ground motion intensity, earthquake magnitude, and hypocentral distance on these ratios. Following a concise overview of the directionality effects and the associated intensity measures, the Costa Rican Strong Motion Database, comprising a total of 4199 horizontal accelerograms (two components), was employed to determine the correction factors. The analysis was carried out for 5% damped response spectra within the 0.01–5 s period range. The study focuses on orientation-independent intensity measures that are derived by combining the maximum values from the recorded motions. In the comprehensive analysis of the complete database, a trend was observed between these intensity measures and the magnitude of the earthquake along with the hypocentral distance. Specifically, records from earthquakes with greater magnitudes exhibited a lower maximum spectral response to the geometric mean of the response spectra of the as-recorded (ar) components ratio (RotD100/GMar), similar to records from earthquakes with larger hypocentral distances. Based on these findings, a proposal was put forth to estimate RotD100 values using GMar values. This ratio can prove useful in transforming data from previous seismic hazard studies, including those applied in many seismic codes, and in defining the maximum anticipated seismic intensity for design purposes in a more straightforward manner.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3