Coupled Large Deformation Finite Element Formulations for the Dynamics of Unsaturated Soil and Their Application

Author:

Ravichandran NadarajahORCID,Vickneswaran Tharshikka

Abstract

Unsaturated soil is a three-phase medium with three interfaces, and the mathematical equations that represent its behavior must be developed in a fully coupled manner for accurately predicting its hydromechanical behavior. In this paper, a set of fully coupled governing equations was developed for the dynamics of unsaturated soil, considering the interaction among the bulk phases and interfaces. In addition to implementing the complete governing equations, a simplified formulation was developed for practical applications. The derivation of the finite element formulation considering all the terms in the partial differential equations resulted in a formulation called complete formulation and was solved for the first time in this paper. Another formulation called reduced formulation was derived by neglecting the relative accelerations and velocities of water and air in the governing equations. In addition, small and large deformation theories were developed and implemented for both formulations. To show the applicability of the proposed models, the dynamic behavior of an unsaturated soil embankment was simulated using both small and large deformation formulations by applying minor and severe earthquakes. The reduced formulation was found to be computationally efficient and numerically stable. The smaller displacements predicted by large deformation theories show that the results are consistent with the expected behavior. Large deformation theories are considered suitable when the geotechnical system undergoes large deformation and may lead to accurate prediction.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Soil Mechanics for Unsaturated Soils;Fredlund,1993

2. General conservation equations for multi-phase systems: 1. Averaging procedure

3. Mechanics of Partially Saturated Porous Media;Schrefler,1990

4. U_DYSAC2: Unsaturated Dynamic Soil Analysis Code for 2-dimensional Problems;Muraleetharan,1999

5. Static and Dynamic Behavior of Multi-Phase Porous Media: Governing Equations and Finite Element Implementation;Wei;Ph.D. Dissertation,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3