Echo Sounding for Remote Estimation of Seabed Temperatures on the Arctic Shelf

Author:

Yusupov VladimirORCID,Salomatin Aleksandr,Shakhova Natalia,Chernykh DenisORCID,Domaniuk Anna,Semiletov Igor

Abstract

The East Siberian Arctic Shelf (ESAS) is a key area of CH4 venting in the Arctic Ocean. The ESAS region stores more than 80% of the world’s predicted subsea permafrost and associated permafrost-related gas hydrates. Gas emissions from subsea permafrost are controlled by its current thermal state, which, in turn, depends on environmental factors. The aim of the manuscript is to show that the thermal state of subsea permafrost and phase transitions of its pore moisture can be estimated remotely by echo soundings, which can resolve the structure of shallow bottom sediments. It has been found that the duration of the seabed acoustic response (echo duration, Δ) at frequencies of 50 and 200 kHz correlates with sediment temperatures and generally increases with cooling below 0.5 °C. This correlation, explained by assuming a layered structure of the bottom sediments, establishes the basis for high-frequency acoustic thermometry. The technique is an advantageous tool for many applications: fast contouring of low-temperature zones, remote measurements of seabed surface temperature, and estimation of the thickness of frozen sediments near the bottom. The latter estimates have implications for the distribution of subsea permafrost and the stability of gas hydrates on the Arctic shelf.

Funder

Program Prioritet 2030 run by the Ministry of Science and Education of the Russian Federation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Intergovernmental Panel on Climate Change. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the fourth Assessment Report of the Intergovernmental Panel on Climate Change;Parry,2007

2. Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison

3. Warming up, turning sour, losing breath: ocean biogeochemistry under global change

4. Permafrost carbon-climate feedbacks accelerate global warming

5. Cryothermia and Gas Hydrates in the Arctic Ocean;Soloviev,1987

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3