Mathematical Model of the Decomposition of Unstable Gas Hydrate Accumulations in the Cryolithozone

Author:

Lobkovsky Leopold I.,Ramazanov Mukamay M.,Semiletov Igor P.,Alekseev Dmitry A.

Abstract

We present a generalization of the mathematical model of gas discharge from frozen rocks containing gas-saturated ice and gas hydrates in a metastable state (due to the self-preservation effect) caused by the drop in external stress associated with various geodynamic factors. These factors can be attributed, for example, to a decrease in hydrostatic pressure on a gas-bearing formation due to glacier melting, causing an isostatic rise, or to the formation of linear depressions in the bottom topography on the shelf due to iceberg ploughing. A change in external pressure can also be associated with seismic and tectonic deformation waves propagating in the lithosphere as a result of ongoing strong earthquakes. Starting from the existing hydrate destruction model, operating at the scale of individual granules, we consider a low-permeable hydrate and ice-saturated horizontal reservoir. Generalization is associated with the introduction of a finite threshold for the external pressure drop, which causes the destruction of the gas hydrate and gas-saturated microcavities of supramolecular size. This makes it possible to take into account the effect of anomalously high pressures occurring in the released gas as a result of partial hydrate dissociation. Numerical and approximate analytical solutions to the problem were found in the self-similar formulation. A parametric study of the solution was carried out, and regularities of the hydrate decomposition process were revealed.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation, Tomsk State University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. Experimental study of gas hydrate formation in porous media;Chuvilin,1999

2. Experimental investigation of gas hydrate and ice formation in methane-saturated sediments;Chuvilin,2003

3. Natural Gas and Gas Hydrates in Cryolithozone;Yakushev,2009

4. The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach

5. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3