Understanding the Snow Cover Climatology over Turkey from ERA5-Land Reanalysis Data and MODIS Snow Cover Frequency Product

Author:

Akyurek Zuhal1ORCID,Kuter Semih2ORCID,Karaman Çağrı H.3ORCID,Akpınar Berkay1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Middle East Technical University, 06800 Ankara, Turkey

2. Department of Forest Engineering, Faculty of Forestry, Çankırı Karatekin University, 18200 Çankırı, Turkey

3. Hidrosaf Ltd., Middle East Technical University Technopolis, 06800 Ankara, Turkey

Abstract

Understanding the distribution, patterns, and characteristics of snowfall and snow cover within a given region over extended periods is important. Snow climatology provides valuable insights into the seasonal and long-term variations in snowfall, helping researchers and meteorologists understand the impacts of climate change on snow accumulation, melt rates, and snowmelt runoff. In this study, in order to understand the spatial and temporal variation in snow cover in Turkey, the temporal and spatial dynamics of snow cover in the country were analyzed during the latest and longest period from 1970 to 2022 using ERA5-Land reanalysis product. It is aimed (1) to show snow-covered area (SCA), snow duration, and snow depth trends over the country; (2) to examine the altitudinal difference of snow phenology response to climate change; and (3) to evaluate the Snow Cover Frequency Maps from MODIS Snow Cover Products with the reanalysis snow depth data. It is found that the “false snow” mapping problem still exists in the MOD10C1_CGF Snow Cover Frequency maps over Turkey, especially in the melting period. We found that an increasing trend of 0.4 °C/decade and snow duration have a decreasing trend due to the early melting between 1970 and 2022. This trend is even more noticeable at elevations below 2000 m. Another important finding is the decreasing trend in snow duration at altitudes below 500 m, indicating a shift from snow to rain for precipitation types.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3