Influence of Surface Roughness and Particle Characteristics on Soil–Structure Interactions: A State-of-the-Art Review

Author:

Wang Runshen,Ong Dominic E. L.ORCID,Peerun Mohammud I.,Jeng Dong-ShengORCID

Abstract

The study of soil–structure interface behavior contributes to the fundamental understanding of engineering performance and foundation design optimization. Previous research studies the effect of soil characteristics and surface roughness property on the soil–material interface mechanism via interface shear test. The reviews utilizing past established laboratory studies and more recent tests based on state-of-the-art technologies reveal that surface roughness significantly affects interface shear performances in the studies of soil–structure interactions, especially in peak shear strength development. A preliminary but original investigative study by the authors was also carried out using a sophisticated portable surface roughness gauge to define the material surface roughness properties in order to study the interface behavior parametrically. Additionally, using the authors’ own original research findings as a proof-of-concept innovation, particle image velocimetry (PIV) technology is applied using a digital single-lens reflex (DSLR) camera to capture sequential images of particle interactions in a custom-built transparent shear box, which validate the well-established four-stage soil shearing model. The authors also envisaged that machine learning, e.g., artificial neural network (ANN) and Bayesian inference method, amongst others, as well as numerical modeling, e.g., discrete element method (DEM), have the potential to also promote research advances on interface shear mechanisms, which will assist in developing a greater understanding in the complex study of soil–structure interactions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3